
Chapter One:  Introduction 

This dissertation addresses an important problem in the visualization of scientific data:  Given 

a family of single-valued functions Fk(x,y) in two dimensions, all sampled on a regular, finite, two-

dimensional grid, i,j, devise visualizations that allow each function to be visually discriminated and 

studied separately and at the same time studied for comparisons and correlations with other functions 

in the family. 

 

We look at data graphically for many reasons:  to get an intuitive feel for values and trends, to 

understand extent and relative proportion.  We display data to inform a curious but non-expert 

audience, to change the mind of the viewer.  An image has the power to communicate what numbers 

cannot.  Why?  Because numbers are difficult to grasp and internalize in a way that we fully 

understand their meaning.   

 

Figure 1.1 shows a set of four single-valued functions from the Intergovernmental Panel on 

Climate Change [IPCC, 2003].  They are ground-frost frequency (days), precipitation 

(millimeters/day), wet-day frequency (days), and vapor pressure (hPa).  The function values represent 

the average climate conditions for the month of February from 1981 through 1990.  Each variable is 

originally a continuous function, sampled once at each weather station and resampled onto a regular 

grid, i,j.  The measured values are discrete values with limited precision; this is true of all data stored 

digitally. 

 

I developed a technique called Data-Driven Spots (DDS), where each function Fk(x,y) is 

sampled, by a random collection of circular Gaussians with a uniform standard deviation, rather than 

presented in full.  Human visual perception estimates the function’s values where it is not represented 

in the sample.  These sampled functions, called layers, are presented overlaid.  Each function is 

sampled and displayed in some regions where the others are not, thus each can be discriminated 

separately; since all are shown simultaneously, correlations can also be estimated.   
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(a)       (b) 

 

    
(c)       (d) 

 
Figure 1.1:  Average climate conditions for the month of February, 1981-1990.  Ground-frost frequency (days) 
is shown in (a), precipitation (millimeters/day) in (b), vapor pressure (hPA) in (c), and wet-day frequency (days) 
in (d).  Data publicly available from the Intergovernmental Panel on Climate Change [IPCC, 2003]. 
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Each function Fk(i,j) is sampled spatially by a two-dimensional array of Gaussians, where 

each Gaussian in the sampling array has the same standard deviation.  There is a unique Gaussian 

sampling function, Gk(i,j), for each Fk(i,j) in the function family.  Examples of Gaussian arrays are 

shown in Figure 1.2.   

 

Gaussians are randomly placed in the array with the center points located at integral i,j points 

on the grid and constrained to maintain a minimal distance from one another.  Because each Gaussian 

function is non-zero to infinity, they overlap, but only in the tails of the functions where the values 

are low.  For explanatory convenience, I define a spot to be the circular area around the center of a 

Gaussian, with a radius of 2.5 standard deviations. 

 

I devised two techniques, each with a static and dynamic variant, for visualizing the layers.  

In the alpha-blending technique, each layer is distinguished by hue and/or the standard deviation of 

the Gaussians.  Data values are multiplied by the Gaussian at each i,j grid point; the result determines 

the opacity of that layer at that point.  Blended with a neutral gray background, each layer has color 

saturation at i,j proportional to the modulated data value.  Since opacities, not saturations, are 

displayed, lower layers are mostly visible between the spots on upper layers, and changing the order 

of layers changes the final visualization. 

 

     
 
Figure 1.2:  Gaussian sampling arrays. 
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In the bump-mapped technique, bumps are visualized by the standard computer graphics 

technique of bump-mapping, in which off-view-axis illumination and perturbed surface normals are 

combined to yield an appearance of bumps and/or indents, even though the surface geometry is not 

modeled.  Data values are multiplied by the Gaussian bump perturbation map to produce a data-

modulated bump map where low values produce shallower-appearing bumps and high values produce 

taller-appearing bumps.  The layers are distinguished by the standard deviation of the Gaussians.  

Order of layers doesn’t affect the final visualization, since the bump maps are additively combined. 

 

Data-Driven Spots Alpha-Blending 

Alpha-blending is a standard computer graphics technique for displaying semi-transparent 

surfaces [Haeberli and Akeley, 1990].  Alpha represents opacity, and the blending operation 

combines the colors of two semitransparent surfaces.  An alpha value of 1.0 corresponds to complete 

opacity, and an alpha value of 0.0 corresponds to complete transparency.   

 

The array of alpha values for each layer, αk(i,j), is the product of the function Fk(i,j) 

multiplied by the Gaussian sampling array Gk(i,j), for each grid point, i,j.  The alpha value is then 

used to blend the color for the layer, Ck, onto the visualization image.  Each layer is blended in 

succession onto the visualization image; the result is stored in an accumulation image.  The blending 

process for layer k is shown in equation 1.1. 

 

Accumk(i,j) = (1 - αk(i,j))  * Accumk-1(i,j) + αk(i,j) * Ck      1.1 

 

Because the blending factors are not symmetric, the order layers are added to the image 

effects the final image color; thus it is important that the user try different orders to produce the most 

revealing final image. 

 

I refer to the product image of the function Fk(i,j) multiplied by the Gaussian sampling array 

Gk(i,j), as a variable-modulated Gaussian array.  Data nearer the center of a Gaussian is sampled by a 

value that is near one and is represented more faithfully; data further out is sampled with a low value 

and contributes little to the final image.  An example of a variable-modulated spot array for the 

ground-frost variable is shown in Figure 1.3. 
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Figure 1.3:  Variable-modulated Gaussian array for ground-frost frequency (days) averaged for the months of 
February during the years 1981-1990. 
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When the variable-modulated Gaussian array is displayed with DDS alpha-blending, high 

data values near the center of a Gaussian spot translate to high opacity, and low data values near the 

center of a Gaussian translate to low opacity.  In between spots there is near-zero opacity, or full 

transparency.   

 

If one layer is displayed over a gray background, the net result is an image of a gray surface 

covered with colored spots.  Within any given spot the data can be seen in the level of transparency or 

the amount of color over the gray background.  A discontinuity at a data boundary can be seen if it 

falls within a spot.   

 

Figure 1.4 shows the four data functions from Figure 1.1 combined in one image.  Each 

function is displayed with a separate visual layer.  Figure 1.5 shows the same data: ground-frost 

frequency, precipitation, wet-day frequency, and vapor pressure, measured during the month of 

August during the years 1981-1990. 

 

Visual obstruction of one variable by another may occur wherever the Gaussian spots used to 

sample the two variables overlap near their center points.  In this case, if one (or both) variable has a 

low value and produces a transparent region in the layer, no visual obstruction occurs.  However, if 

both variables have a high value at the sample location, then only the variable displayed by the 

uppermost layer is seen.  One solution to this problem is to decrease the Gaussian standard deviation 

as layers are applied, so smaller spots are stacked on top of larger ones.  The human mind interpolates 

the continuation of the larger spot even when partially obscured by a smaller spot on top – this is 

based on the perceptual phenomenon of good continuation [Hoffman, 1998], discussed more in 

Chapter Three.   

 

It remains an interesting question how many distinguishable layers can be displayed with 

DDS alpha-blending using different colors and Gaussian standard deviations for each layer.  The 

experimental validation of DDS began to explore this question and showed that up to six 

distinguishable layers could be displayed with color.  The experiment did not seek to find the 

maximum number of layers that could be displayed with DDS alpha-blending, however.   
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Figure 1.4:  Average climate conditions for the month of February during the years 1981-1990.  Ground-frost 
frequency (days) is shown in white, precipitation (millimeters/day) in blue, vapor pressure (hPA) in red, and 
wet-day frequency (days) in green. 
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Figure 1.5:  Average climate conditions for the month of August during the years 1981-1990.  Ground-frost 
frequency (days) is shown in white, precipitation (millimeters/day) in blue, vapor pressure (hPA) in red, and 
wet-day frequency (days) in green. 
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To fully solve problems in image congestion and visual obstruction caused by overlapping 

layers, the final image displayed must be both interactive and dynamic.  By interactive I mean that the 

image is generated by a person who interacts with the system to find a good mapping of variables to 

Gaussian arrays.  The DDS software system provides multiple display parameters for each visual 

layer that can be interactively manipulated by the viewer:  the hue and size of the spots, and 

animation parameters such as the direction and speed of motion.  The viewer may also manipulate the 

order in which the layers are applied.  A dynamic display is animated by translating the Gaussian 

sampling array of a layer as a texture unit so the spots move across the background in unison while 

maintaining constant relative placement.  A moving layer is seen as visually separate from static 

layers.  Because each layer moves as a unit, visual separation among multiple moving layers can be 

achieved by assigning each a different speed and/or direction of motion. 

 

Another benefit of animation is that the moving Gaussians sample different points in the 

variable’s spatial extent over time, so all data values are eventually sampled and displayed.  The 

viewer is able to form a complete mental representation of the data while watching the animation.  

The final visualization image, the accumulation image, and the Gaussian sampling array are all 

functions of time, t, while the data function remains constant (equations 1.2 and 1.3). 

 

αtk(i,j) = Fk(i,j) * Gtk(i,j),          1.2 

Accumtk(i,j) = (1 - αtk(i,j))  * Accumtk-1 (i,j) + αtk(i,j) * Ck      1.3 

 

Data-Driven Spots Bump-Mapping  

Bump-mapping, first developed by Blinn [Blinn, 1978], is now a standard computer graphics 

technique for adding the illusion of detailed surface geometry without actually altering the surface 

representation.  Bump-mapping modifies the surface normals, causing a modification of the shading, 

and the perception of a bumpy surface.  How the bump-mapped surface looks depends on the surface 

geometry and surface normals, the illumination model used to light the surface, the location of the 

light source, and the location of the viewer.   
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DDS uses Phong illumination [1975], which models both diffuse (scattered) reflection and 

specular (directional) reflection of light from a surface.  Diffuse reflection is view-independent and 

models a random scattering of light from matte surface materials such as clay or chalk.  Specular 

reflection is view-dependent and models bright highlights from smooth surfaces such as plastic or 

polished metal.  Specular reflection produces bright highlights that can be seen when the viewer looks 

in the direction of the reflected light, thus it depends on the angle the light is reflected about the 

surface normal and on the view direction.  Figure 1.6 shows an example of two bump-maps on the 

same surface, one with diffuse-only reflection and the other with both diffuse and specular reflection.  

There are two light sources modeled in the images, one from above the viewer and another from the 

right of the viewer. 

 

     
(a)       (b) 

 
Figure 1.6:  Large and small bumps shown with diffuse only reflection (a) and with both diffuse and specular 
reflection (b).  The surface is lit by two different light sources: one from above and another from the right of the 
viewer. 
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Diffuse and specular reflection models both use the surface normals in the lighting equation – 

this means either can be used to illuminate a bump-mapped surface.  When the surface normals are 

used in the lighting calculation, changes in surface shading can be produced by changing the direction 

of the normal – without changing the underlying surface geometry.  Bump-mapping varies the surface 

normal of a smooth surface to produce shading that would occur if the surface were bumpy – the 

normals are true to the bumps, but the geometry is not.  Because the geometry does not match the 

normals, bump-mapping produces several inconsistencies in the surface appearance.  For example a 

bump-mapped surface will look incorrectly smooth when seen in silhouette.  In DDS the surface is 

always oriented perpendicular to the view direction, with the lights positioned slightly above and to 

the right of the view direction; thus the illusion of the bump-mapped surface is seen with minimal 

artifact. 

 

The Gaussian sampling array, Gk(i,j), is processed to produce a normal-perturbation map.  

The normal-perturbation map specifies dx(i,j), dy(i,j), values that are added to the normal of a flat 

surface to produce the appearance of height-varying Gaussian bumps across the surface.  To display 

the data, Fk(i,j), with bump-mapping, the normal perturbation map is multiplied by the function 

Fk(i,j), at each grid point i,j, producing a variable-modulated normal, N(i,j).  (equation 1.4).  The 

normal, N(i,j), is then re-normalized to unit length.  A visualization image with multiple bump-maps 

is made by adding the variable-modulated perturbation maps together. 

 

Nx(i,j) = Fk(i,j) * dxk (i,j)  

Ny(i,j) = Fk(i,j) * dyk (i,j)  

Nz(i,j) = 1.0          1.4 

 

When the Gaussian spot array is displayed with DDS bump-mapping it appears as a three-

dimensional surface with raised bumps protruding from the surface.  High data values produce taller-

appearing bumps and low data values produce shallower-appearing bumps.  The DDS visualization 

technique can display multiple variable-modulated bump-maps on one surface; they appear as bumps 

on top of bumps.  The size, i.e. standard deviation, of the Gaussians must be different for each layer 

so the viewer can distinguish among bump-mapped variables.  The order in which the bump layers 

are added to the surface does not matter.  Figure 1.7 shows a bump-mapped image of two of the 

climate variables: precipitation with smaller bumps and wet-day frequency with larger bumps. 
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Figure 1.7:  Bump-mapping display of average climate conditions for the month of February during the years 
1981-1990.  Precipitation (millimeters/day) is shown in small bumps and wet-day frequency (days) in large 
bumps.  
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The experimental validation of DDS showed that, in the presence of distractors, viewers had 

more difficulty discriminating among multiple bump-mapped layers than among multiple alpha-

blended layers.  The pilot experiment tested up to four bump-mapped layers in combination with up 

to five alpha-blended layers, for a total of nine layers in an image, where both alpha-blended and 

bump-mapped layers were specified alternately as targets while the other layers served alternately as 

distractors.  Task performance for the bump-mapped targets showed that the viewers confused two 

different bump-mapped layers that had similar sized bumps – the two smallest sizes.  The main 

experiment reduced the number of bump-mapped layers in the images from four to three, and 

increased the differences in bump standard deviations.  Viewers in the second experiment confused 

the bump layers less, but there was still some evidence that multiple bump layers diminished 

performance.  The question of how many bump layers can be displayed at once has not been fully 

answered.  I believe that an expert user, someone who is very familiar with the DDS display 

technique, could discriminate up to four or five different bump mapped layers in the presence of 

alpha-blended layers.  However, the difficulty of discrimination and therefore the likelihood of 

mistaking one layer for another increase significantly with the number of different bump-mapped 

layers in an image.   

 

Combining bump-mapped layers with alpha-blended layers means that the viewer must adapt 

him or herself to two different display methods.  When multiple layers of information are displayed in 

a single image, the degree of layer consistency affects the number of layers that can be discriminated 

by increasing or decreasing the viewer’s cognitive load.  Displaying multiple layers with different 

techniques increases the mental load on the viewer by requiring him or her to learn and remember the 

meaning of each display technique.  By keeping the display techniques uniform across layers, the 

viewer must only learn one mapping, which frees him or her to process more data.  By reducing the 

number of display techniques that the viewer must know, it is possible to increase the amount of data 

he or she can process and understand; Tufte discusses this benefit of a uniform display in his book 

[Tufte, 1983]. 
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Experimental Validation of Data-Driven Spots 

I designed pilot and main human-factors experimental evaluations of the Data-Driven Spot 

display technique.  The studies sought to determine whether multiple variables are visually 

discriminable when displayed together in a single image.  Chapter Three presents the pilot and main 

experiments fully; the main experiment is outlined briefly below.  Three questions examined in the 

study are: 

 

Research Questions 

Question One: Does overlay provide a performance benefit for an overlap estimation task and 

an intersection-sketch task?  How do participants perform with overlaid multi-layer DDS images 

compared to single-layer DDS images shown side-by-side?   

 

Question Two: Where is the benefit crossover?  If presenting targets overlaid in a single 

image allows for more accurate performance for an overlap estimation task and an intersection-sketch 

task, then is there a point where the multitude of additional layers causes enough visual interference 

that the task is more accurately performed looking at the targets side-by-side?   

 

Question Three: Are DDS alpha-blended layers more visually salient than DDS bump-

mapped layers in a multi-layer visualization?  How do the display parameters of individual target 

DDS layers influence their visual salience in the presence of distractors? 

 

Methods 

The test images are multi-layer DDS images of binary functions, Fk(i,j), of coherent shapes, 

such as squares, circles, triangles, ellipses and rectangles.  Each Fk(i,j) is displayed on a separate 

visual layer, sampled with either DDS alpha-blended spots or DDS bump-mapping.  An example of a 

trial image is shown in Figure 1.8. 
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Figure 1.8:  An example trial image from the study.  The two target layers are the vertical rectangle shown in 
red alpha-blended spots and triangle shown in green alpha-blended spots.  The rectangle in blue spots serves as 
a distractor layer.   
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During an experimental trial, participants are asked to focus on two of the layers: target A and 

target B.  Participants perform two tasks.  First, they give a numerical estimate of the percentage of 

target A that is overlapped by target B.  Second, they sketch the intersection region of targets A and 

B.  There was no time limit for either task.  An intersection sketch and the correct intersection are 

shown in Figure 1.9. 

 

Two independent variables are systematically manipulated during the experimental trials.  

The first independent variable that is manipulated across trials is how the data values of the two target 

shapes are displayed.  The first method for displaying the data is DDS alpha-blending, where different 

layers are distinguished by hue and by standard deviation of the Gaussians.  The second method for 

displaying the data is DDS bump-mapping, where layers are distinguished by the sizes of the bumps.   

 

The Target Display Type condition has three categories.  In the first category both target 

layers are displayed with DDS alpha-blending, distinguished by the hue and sizes of the spots.  In the 

second category both target layers are displayed with DDS bump-mapping, distinguished by the sizes 

of the bumps.  In the third category one target layer is displayed with DDS alpha-blending and the 

other target layer is displayed with DDS bump-mapping.  These categories are referred to as Color-

Color, Bump-Bump, and Color-Bump; examples are shown in Figure 1.10.   

     
(a)             (b) 

 
Figure 1.9:  An example intersection sketch for the trial image in Figure 1.8 is shown in (a).  The correct 
intersection is in (b). 
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(a)       (b) 

 

       
(c) 

 
Figure 1.10:  Examples of the different Target Display Types.  Color-Color in (a), Color-Bump in (b), and 
Bump-Bump in (c). 
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The second independent variable manipulated during the experimental trials is the Display 

Condition; it has 10 categories.  For one category of Display Condition target A is displayed in one 

DDS layer with the intersection region of target A and target B displayed in a second DDS layer.  

Both DDS layers are overlaid in a single image.  In this category of Display Condition, target B is not 

displayed, nor are any other shapes.  This category is referred to as Intersection-View. 

 

The second category of Display Condition presents target A and target B in two separate 

DDS layers, not overlaid in a single image, but in two images shown side by side.  This category of 

Display Condition is referred to as Side-by-side-View. 

 

The remaining eight categories of Display Condition present target A and target B in two 

separate DDS layers, overlaid in one image.  In these categories, the image contain between zero and 

seven extra shapes, each in a separate DDS layer.  All shapes are overlaid in the test image.  These 

categories are referred to as C0-C7 respectively.  The term distractor is used for the non-target layer 

in categories C0-C7.  Figures 1.11 through 1.14 show examples of Display Condition levels Side-by-

side view, Intersection view, C0, C1, C3, C5, and C7. 

 

The target layers are displayed with up to seven distractor layers, representing images with up 

to nine single-valued binary functions.  The results of the experimental validation of the DDS data 

visualization technique lead to the following: 

 

Thesis Statement   

People can discriminate up to nine two-dimensional single-valued binary functions, Fk(i,j), of 
coherent shapes displayed with Data-Driven Spots. 
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(a)       (b) 

 

 
(c) 

 
Figure 1.11:  Examples of the different Display Conditions.  Side-by-side view in (a) and (b), and Intersection 
view in (c). 
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(a)       (b) 

 

 
(c) 

 
Figure 1.12:  Examples of the different Display Conditions.  C0 in (a) with no distractors, targets are a red 
horizontal oval and a green triangle. C1 in (b), targets are a red rectangle and a green square; the blue spot 
rectangle is the distractor.  C3 in (c), targets are a red vertical oval and a green vertical oval; the blue spot 
triangle, purple spot rectangle, and large bump oval are distractors. 
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Figure 1.13:  Examples of Display Condition C5.   Targets are a red spot horizontal rectangle and a green spot 
horizontal oval.  Distractors are a blue spot rectangle, a purple spot oval, a large bump triangle, medium bump 
rectangle, and a yellow spot oval. 
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Figure 1.14:  Examples of Display Condition C7.   Targets are a red spot horizontal oval and a green spot 
horizontal rectangle.  Distractors are a blue spot triangle, a purple spot oval, a large bump circle, medium bump 
oval, and a yellow spot circle, small bump square, and a cyan spot circle. 
 
Even in images with this much overlap and congestion, people performed twice as well as for images in the 
Side-by-side view, which never had distractors. 
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Experimental Results 

Two performance measures are calculated for each category of Display Condition for each of 

the three sessions.  The first metric represents the error in overlap estimate, compared to the correct 

percentage of overlap.  The error is calculated as the absolute value of the difference.   The second 

metric represents the sketch score.  The sketches are compared to the correct computer-derived 

shapes, all sketches are graded on a three-point scale of wrong: -1, mostly correct: 0, exact: 1.  

Sketches are judged to be exact if they match the desired shape in form; positioning and scale of the 

shape relative to the image boundary is not considered.   

 

Each participant completes three experimental sessions with Target Display Type varying 

across sessions.  During a session participants complete five different trials for each of the 10 

categories of Display Condition.   This design produces 50 trials per participant for each session and 

150 trials for each participant overall.  A total of 30 people participated in the experiment, giving 

4500 sketches and 4500 overlap estimates.   

 

Question One: How do participants perform with multi-layer DDS images compared to single-layer 
DDS images shown side-by-side?   

Performance for the Side-by-Side is significantly worse than for C7 (p < 0.0001).  Error for 

the Side-by-side view is twice that of C7 for the overlap estimation task.  Target Display Type is not a 

significant factor.  Both the overlap estimation task and the sketch task produced the same results in 

the analysis.  Figure 1.15 shows a plot comparing performance for the Color-Color group conditions 

C0-C7 with the Side-by-side view.  The Side-by-side view never had distractors, however, in the 

graph, performance for the Side-by-side view is drawn across the conditions C0-C7 to aid 

comparisons. 
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Question Two: Is there a point where the multitude of additional layers causes enough visual 
interference that the task is more accurately performed looking at the targets side-by-side? 

Performance for the overlap conditions is always better than for the Side-by-side view, for up 

to nine layers tested in the experiment.  A test for zero slope finds significant non-zero slopes for all 

three conditions: Color-Color slope is 0.003 (p = 0.0028); Bump-Bump slope is 0.004 (p = 0.0008); 

Color-Bump slope is 0.007 (p = 0.0003).  The difference in performance for zero distractors and 

seven distractors predicted by this analysis is only 2 percentage points for the Color-Color group, 

2.86 percentage points for the Bump-Bump group, and only slightly more: 5 percentage points for the 

Color-Bump group.    
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Figure 1.15:  Performance for the Color-Color group: conditions C0-C7 are shown in blue triangles; the solid 
blue line is the result of the linear regression analysis which gives both intercept and slope.  The Side-by-side 
condition is shown in the horizontal dashed line at the top of the graph.  The Side-by-side view never had 
distractors, however, in the graph, performance for the Side-by-side view is drawn across the conditions C0-C7 
to aid comparisons.  Error for the side-by-side view was significantly worse than for all the overlapping views. 

Side-by-side 
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How many distractors could be handled using each of the techniques?  This experiment does 

not answer that question.  As a speculation, linear extrapolation would put the crossing point at 40 

distractors for the Color-Color group, 25 distractors for the Bump-Bump group, and 18 distractors for 

the Color-Bump group.  Figure 1.16 shows the predicted performance graphs for the three groups 

compared to the average Side-by-side view performances. 
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Figure 1.16:  Linear fits for the Color-Color, Color-Bump, and Bump-Bump groups.  The statistical analysis 
found a significant non-zero slope for each group.  The Side-by-side condition is shown in the horizontal lines at 
the top of the graph.  The Side-by-side view never had distractors, however, in the graph, performance for the 
Side-by-side view is drawn across the conditions C0-C7 to aid comparisons.  Error for the side-by-side view was 

  

 
Side-by-side 
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Question Three: Are DDS alpha-blended layers more visually salient than DDS bump-mapped layers 
in a multi-layer visualization?   

The answer is yes.  DDS alpha-blended layers are easier to see in a multi-layer image than 

DDS bump-mapped layers.  This is most readily seen when the results for the pilot and main studies 

are compared, see Figures 1.17 and 1.18.  The pilot and main studies test different numbers of DDS 

alpha-blended and DDS bump-mapped distractors.  In the pilot study up to four layers are displayed 

with DDS bump-mapping, and this causes a significant interference with the participants’ ability to 

see the bump-mapped targets.  When the number of layers displayed with bump-mapping is reduced 

to three, performance dramatically improves – this is immediately obvious when looking at the graph 

(Figure 1.17). 
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Figure 1.17:  Comparison of the Bump-Bump groups for the pilot and main studies.  Here the distractor effect 
of bumps on top of other bumps is the most evident.  For the four bump case (solid red line), performance 
degrades, approaching the performance for the Side-by-side view, while the three bump case remains 
significantly below the Side-by-side view performance.  The Side-by-side view never had distractors, however, 
in the graph, performance for the Side-by-side view is drawn across the conditions C0-C7 to aid comparisons. 

  

 
Side-by-side 
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Performance for the Color-Color groups remains remarkably consistent between the pilot and 

main studies, despite several differences in experimental design and the choice of colors and standard 

deviations used of the alpha-blended layers.  This consistency across studies strengthens and validates 

the result that DDS alpha-blended layers are visually salient in the presence of distractors (Figure 

1.18). 
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Figure 1.18:  Comparison of the Color-Color groups for the pilot and main studies.  The Side-by-side view 
never had distractors, however, in the graph, performance for the Side-by-side view is drawn across the 
conditions C0-C7 to aid comparisons.  The Color-Color results for both studies are identical. 
 

 
Side-by-side
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Observations 

The experimental analysis supports the thesis statement: People can discriminate up to nine 

two-dimensional single-valued binary functions, Fk(i,j), of coherent shapes displayed with Data-

Driven Spots.  The following list, while not proven by experimental analysis, is supported by many 

observations of people creating and viewing DDS visualizations. 

 

1.  Animation of a DDS layer dramatically increases the visual salience of that layer – the 

viewer’s attention is immediately drawn to the moving spots and the underlying data variable.  DDS 

layers that are low in value, and therefore displayed with faint spots, become much easier to see.  I 

have also noticed that small, spatially isolated areas that may go unnoticed become more salient with 

animation:  the flickering on/off of color as the areas are alternately sampled and not sampled is quite 

noticeable. 

 

Animation increases the visual salience of boundaries in the data.  The moving Gaussians 

sample different points in the variable’s spatial extent over time, so all data values are eventually 

sampled and displayed.  I believe that the viewer has a complete and accurate mental representation 

of the boundary while watching the animation. 

 

2.  People can discriminate up to nine two-dimensional single-valued non-binary functions, 

Fk(i,j), displayed with Data-Driven Spots.  DDS can display a variety of types of 2D single-valued 

functions, such as scanning electron microscope (SEM), climate, and census data.  Many examples 

are included throughout this dissertation.  It is also interesting to note that people can see photographs 

and perceptual illusions such as the Necker cube, subjective contours, and the face-vase illusion when 

displayed with DDS, in spite of the spatial sampling.  Human perception of visual illusions provides 

insight into how our visual system works; that we still see the illusions when sampled with DDS 

indicates that the sampling does not impair our perception of important information in the data. 

 

3. DDS visualizations enable the viewer to investigate spatial correlations among variables.  

DDS is meant as a qualitative tool for scientific exploration during the early stages of investigation 

when a scientist is searching for regions of interest or visual patterns in the data – areas where he 

might focus his analysis further.  Because multiple spatial variables are layered simultaneously in one 

image, a scientist can compare how the variables change together across a region and can possibly 

create new insights into how the variables interact. 
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4.  Data in each DDS layer is sampled by a 2D array of Gaussian spots to enable layering of 

multiple variables in a single image with minimal visual obstruction of the data.   The Gaussian spots 

act as windows through which the data can be seen.  When a boundary in the data falls across a spot 

the spot is cut, and the boundary is clearly visible.  Sampling with spots conserves boundary 

information in the data by creating the perception that the boundary continues between spots through 

subjective contour illusions.  To prevent confusing a boundary in the data with a feature of the sample 

shape, sampling must be done with a spot shape instead of a shape with second-order edge 

discontinuities, such as a square or triangle – the underlying sample unit cannot contain cusps in its 

outline.   

 

The smooth edge of the Gaussian also appears to enhance the perception of sharp boundaries 

in the data, when they cross the Gaussian spots.  If the spots were truncated at 2.5 standard deviations, 

the sharp edge of the Gaussian spot could interfere with the viewer’s perception  of boundaries in the 

data. 

 

I have also observed that sampling with Gaussian arrays is better than sampling with 

reaction-diffusion derived textures.  The reaction-diffusion texture generation techniques create spots 

with non-uniform shapes and non-uniform intensities.  The Gaussian arrays are created such that each 

Gaussian is identical in shape and intensity.   

 

5.  User exploration to find a good mapping of spot density, size, and color, layer order, and 

animation speed and direction for each variable displayed is important for the successful use of DDS 

as a display technique.  Creating a visualization that shows the data with minimal visual interference 

among layers takes a few minutes of exploration.  This exploration is not without benefit, however, as 

interacting with the data visualization increases the user’s understanding and knowledge of the data. 

 

Users should decrease the spot standard deviation with successive layers, so that smaller 

spots are layered on top of larger spots.  Likewise, users should decrease the spot sample density with 

each layer so that lower layers are sampled more densely and upper layers are sampled more sparsely, 

allowing the underneath layers to be better seen.  Lighter colors, such as yellow, cyan and light green, 

are easier to see when used for the upper layers, whereas darker colors, such as dark blue and green, 

purple and red can be used for lower layers. 
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It is important that the user try the variables in different layer positions to find a visualization 

with acceptable amounts of overlap.  Likewise, the user should try different spot densities, colors, and 

sizes for each variable as the data may be easier to see when displayed with a different hue or size of 

spot.  Animation should also be used during the investigation to test the visibility of low data values 

and high-frequency boundaries in the static image. 

 

Most importantly, each variable layer should have unique color and size of spots, so that each 

variable is visually distinct.  I believe DDS layers are visually distinct because they are limited in the 

number of features each can display – one color, one size of spots, and one data variable per layer.   

 

6.  DDS can effectively display two-dimensional single-valued functions, Fk(i,j), on a 3D 

terrain.  Examples of the climate data displayed on a topographic map are shown in Chapters Two 

and Five.  I also believe that DDS can be extended to effectively display three-dimensional single-

valued functions, Fk(x,y,z), by replacing the 2D Gaussian spots with 3D Gaussian-like blobs. 

 

Chapter Summaries 

Chapter Two presents the Data-Driven Spots algorithm and implementation.  Generating 

Gaussian sampling arrays is described, followed by a discussion of other texture techniques.  Both 

DDS alpha-blending and DDS bump-mapping are presented in full detail.  The benefits of animating 

DDS layers, which produces powerful results, is also described.  Finally the Chapter concludes with a 

visualization gallery of different types of data, such as scanning electron microscope, climate, census, 

and habitat data. 

 

Chapter Three starts with an overview of the experimental evaluation of DDS.  A literature 

review of related work in perceptual psychology follows.  The chapter is then divided into the pilot 

and the main study sections, each of which describes the experimental design, examples, and analysis.  

A comparison and discussion of the results concludes the Chapter. 

 

Chapter Four provides a review of related work in multidimensional data visualization.  A 

taxonomy of separable and integrated displays is presented, and the techniques are compared.  

Several images from the related work are presented to illustrate the display methods.   
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Chapter Five outlines directions for future work, starting with examples of animated DDS 

layers.  Four broad lines of inquiry are discussed: 1) Investigating the powerful impact of animated 

DDS layers.  2) Investigating further the cognitive and perceptual issues surrounding DDS.  How do 

people interact with the DDS visualization system and how does manipulating the different parameter 

mappings impact understanding?  2) Extending the DDS visualization technique to higher-

dimensional data, such as volume visualization or visualization of data on a three-dimensional 

surface, such as a globe with elevation mapped to surface height.  3) Augmenting the DDS 

Visualization Toolkit with knowledge-based systems to aid users in creating visualizations of their 

data with DDS.   

 


